Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Biomed Pharmacother ; 174: 116516, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583339

RESUMO

The Plectranthus genus is often cited for its medicinal properties. Plectranthus ornatus Codd. is traditionally used in Africa for the treatment of gastric and liver diseases and their leaves are used for their antibiotic action. The main constituent of P. ornatus is the halimane compound, 11 R∗-acetoxyhalima-5,13E-dien-15-oic acid (Hal), described for its antimicrobial and anticancer properties. The objective of this work was to improve the activity of the halimane lead molecule. Further physiochemical characterisation was performed on Hal. To the best of our knowledge, this work constitutes the first published data of the absolute configurations by SCXRD and thermal stability of Hal. Using Hal, reactions with different amines were carried out to afford novel semi-synthetic derivatives and their structural elucidation was completed. The cytotoxicity of the derivatives was assessed against three leukaemia cancer cell lines (CCRF-CEM, K562 and HL-60). The antioxidant activity was investigated using H2O2-induced HGF-1 cells and their anti-inflammatory activity was studied using RT-PCR and ELISA. Our data showed that amide derivatives of Hal presented moderate cytotoxicity and more potent activity when compared to the parent molecule, giving insight into the SAR of Hal. The derivatives also displayed protection against oxidative damage to DNA. Finally, the derivatives possessed anti-inflammatory properties at the level of gene and protein expression for the cytokines IL-1ß, TNF-α and IL-6, induced by LPS in normal HGF-1 cells. Overall, our study provides useful insight into the enhanced biological activities of semi-synthetic Hal derivatives, as a starting point for novel drug formulations in cancer therapy.

2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256118

RESUMO

Plectranthus scutellarioides (L.) R.Br. is a medicinal plant that has long been used in traditional medicine to treat conditions such as abscesses, ulcers, and ear and eye infections. It is known to have a wide range of biological properties, such as antibacterial, antioxidant, antifungal, anti-inflammatory, anti-diabetic and anti-cancer effects. In this study, we established in vitro cultures from both the aerial parts and roots of Plectranthus scutellarioides. Subsequently, we compared the basic phytochemical profile of the obtained extracts and conducted a biological analysis to assess their potential for inducing apoptosis in breast (MCF-7) and lung (A549) cancer cells. Phytochemical analysis by HPLC-MS revealed the presence of compounds belonging to phenolic acids (ferulic, syringic, vanillic, rosmarinic, chlorogenic, caffeic, coumaric, dihydroxybenzoic acids), flavonoids (eriodyctiol and cirsimaritin), and terpenes such as 6,11,12,14,16-Pentahydroxy-3,17diacetyl-8,11,13-abietatrien-7-one, 6,11,12,14,16-Pentahydroxy-3,17-diacetyl5,8,11,13-abietatetraen-7-one, and 3,6,12-Trihydroxy-2-acetyl-8,12-abietadien7,11,14-trione. The results show that both extracts have a cytotoxic and genotoxic effect against MCF-7 and A549 cancer cells, with a different degree of sensitivity. It was also shown that both extracts can induce apoptosis by altering the expression of apoptotic genes (Bax, Bcl-2, TP53, Fas, and TNFSF10), reducing mitochondrial membrane potential, increasing ROS levels, and increasing DNA damage. In addition, it has been shown that the tested extracts can alter blood coagulation parameters. Our results indicate that extracts from in vitro cultures of Plectranthus scutellarioides aerial parts and roots have promising therapeutic application, but further research is needed to better understand the mechanisms of their action in the in vitro model.


Assuntos
Ácidos Cumáricos , Plectranthus , Humanos , Células A549 , Antibacterianos , Compostos Fitoquímicos
3.
Prog Lipid Res ; 92: 101254, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820872

RESUMO

MDD (major depressive disorder) is a highly prevalent mental disorder with a complex etiology involving behavioral and neurochemical factors as well as environmental stress. The interindividual variability in response to stress stimuli may be explained by processes such as long-term potentiation (LTP) and long-term depression (LTD). LTP can be described as the strengthening of synaptic transmission, which translates into more efficient cognitive performance and is regulated by brain-derived neurotrophic factor (BDNF), a protein responsible for promoting neural growth. It is found in high concentrations in the hippocampus, a part of the limbic system which is far less active in people with MDD. Omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) not only contribute to structural and antioxidative functions but are essential for the maintenance of LTP and stable BDNF levels. This review explores the mechanisms and potential roles of omega-3 fatty acids in the prevention of MDD.


Assuntos
Transtorno Depressivo Maior , Ácidos Graxos Ômega-3 , Animais , Humanos , Transtorno Depressivo Maior/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Potenciação de Longa Duração/fisiologia , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos , Peixes
4.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833905

RESUMO

T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 µM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.


Assuntos
Micotoxinas , Toxina T-2 , Animais , Humanos , Micotoxinas/toxicidade , Micotoxinas/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Linhagem Celular , Dano ao DNA , DNA/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894959

RESUMO

The Lamiaceae is one of the most important families in the production of essential oils known to have a wide spectrum of biological activity. Recent research has highlighted the dermatological capabilities of various Lamiaceae essential oils, which appear to offer potential in free radical scavenging and anti-inflammatory activity. Some have also been extensively studied for their tissue remodeling and wound-healing, anti-aging, anti-melanogenic, and anti-cancer properties. Certain Lamiaceae essential oils are promising as novel therapeutic alternatives for skin disorders. This potential has seen substantial efforts dedicated to the development of modern formulations based on nanotechnology, enabling the topical application of various Lamiaceae essential oils. This review provides a comprehensive summary of the utilization of various essential oils from the Lamiaceae family over the past decade. It offers an overview of the current state of knowledge concerning the use of these oils as antioxidants, anti-inflammatory agents, wound-healers, anti-aging agents, anti-melanogenic agents, and anticancer agents, both alone and in combination with nanoparticles. Additionally, the review explores their potential applicability in patents regarding skin diseases.


Assuntos
Pesquisa Biomédica , Lamiaceae , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Nanotecnologia
6.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834200

RESUMO

One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.


Assuntos
Transtorno Depressivo Maior , Polimorfismo de Nucleotídeo Único , Humanos , Transtorno Depressivo Maior/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Estresse Oxidativo/genética
7.
J Pers Med ; 13(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37763083

RESUMO

HDAC inhibitors (HDACi) hold great potential as anticancer therapies due to their ability to regulate the acetylation of both histone and non-histone proteins, which is frequently disrupted in cancer and contributes to the development and advancement of the disease. Additionally, HDACi have been shown to enhance the cytotoxic effects of DNA-damaging agents such as radiation and cisplatin. In this study, we found that histone deacetylase inhibits valproic acid (VPA), synergized with PARP1 inhibitor (PARPi), talazoparib (BMN-673), and alkylating agent, and temozolomide (TMZ) to induce DNA damage and reduce glioblastoma multiforme. At the molecular level, VPA leads to a downregulation of FANCD2 and RAD51, and the eradication of glioblastoma cells. The results of this study indicate that combining HDACi with PARPi could potentially enhance the treatment of glioblastoma, the most aggressive type of cancer that originates in the brain.

8.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446611

RESUMO

Nanoparticles (NPs), due to their size, have a key position in nanotechnology as a spectrum of solutions in medicine. NPs improve the ability of active substances to penetrate various routes: transdermal, but also digestive (active endocytosis), respiratory and injection. Chitosan, an N-deacetylated derivative of chitin, is a natural biodegradable cationic polymer with antioxidant, anti-inflammatory and antimicrobial properties. Cross-linked chitosan is an excellent matrix for the production of nanoparticles containing active substances, e.g., the Ginkgo biloba extract (GBE). Chitosan nanoparticles with the Ginkgo biloba extract (GBE) were obtained by ion gelation using TPP as a cross-linking agent. The obtained product was characterized in terms of morphology and size based on SEM and Zeta Sizer analyses as well as an effective encapsulation of GBE in nanoparticles-FTIR-ATR and UV-Vis analyses. The kinetics of release of the active substance in water and physiological saline were checked. Biological studies were carried out on normal and cancer cell lines to check the cytotoxic effect of GBE, chitosan nanoparticles and a combination of the chitosan nanoparticles with GBE. The obtained nanoparticles contained and released GBE encapsulated in research media. Pure NPs, GBE and a combination of NPs and the extract showed cytotoxicity against tumor cells, with no cytotoxicity against the physiological cell line.


Assuntos
Quitosana , Nanopartículas , Extratos Vegetais/farmacologia , Ginkgo biloba
9.
Mol Cancer Res ; 21(10): 1017-1022, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37358557

RESUMO

DNA polymerase theta (Polθ, encoded by POLQ gene) plays an essential role in Polθ-mediated end-joining (TMEJ) of DNA double-strand breaks (DSB). Inhibition of Polθ is synthetic lethal in homologous recombination (HR)-deficient tumor cells. However, DSBs can be also repaired by PARP1 and RAD52-mediated mechanisms. Because leukemia cells accumulate spontaneous DSBs, we tested if simultaneous targeting of Polθ and PARP1 or RAD52 enhance the synthetic lethal effect in HR-deficient leukemia cells. Transformation potential of the oncogenes inducing BRCA1/2-deficiency (BCR-ABL1 and AML1-ETO) was severely limited in Polq-/-;Parp1-/- and Polq-/-;Rad52-/- cells when compared with single knockouts, which was associated with accumulation of DSBs. Small-molecule inhibitor of Polθ (Polθi) when combined with PARP or RAD52 inhibitors (PARPi, RAD52i) caused accumulation of DSBs and exerted increased effect against HR-deficient leukemia and myeloproliferative neoplasm cells. IMPLICATIONS: In conclusion, we show that PARPi or RAD52i might improve therapeutic effect of Polθi against HR-deficient leukemias.


Assuntos
Leucemia , Mutações Sintéticas Letais , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Recombinação Homóloga , Leucemia/genética , Reparo do DNA , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Poli(ADP-Ribose) Polimerase-1/genética
10.
Genes (Basel) ; 14(6)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372475

RESUMO

The inhibition of histone deacetylases (HDACs) holds promise as a potential anti-cancer therapy as histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, the use of a histone deacetylase inhibitor (HDACi) such as the class I HDAC inhibitor-valproic acid (VPA) has been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that the use of VPA in combination with talazoparib (BMN-673-PARP1 inhibitor-PARPi) and/or Dacarbazine (DTIC-alkylating agent) resulted in an increased rate of DNA double strand breaks (DSBs) and reduced survival (while not affecting primary melanocytes) and the proliferation of melanoma cells. Furthermore, the pharmacological inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-673. In addition, the inhibition of HDACs causes the sensitization of melanoma cells to DTIV and BMN-673 in melanoma xenografts in vivo. At the mRNA and protein level, the histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study aims to demonstrate that combining an HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is commonly recognized as being among the most aggressive malignant tumors. The findings presented here point to a scenario in which HDACs, via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.


Assuntos
Antineoplásicos , Melanoma , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácido Valproico/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Dacarbazina/uso terapêutico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , DNA , Alquilantes/uso terapêutico
11.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982980

RESUMO

Asthma is an inflammatory disease whose etiology remains unclear. Its characteristics encompass a wide range of clinical symptoms, inflammatory processes, and reactions to standard therapies. Plants produce a range of constitutive products and secondary metabolites that may have therapeutic abilities. The aim of this study was to determine the effects of Senna obtusifolia transgenic hairy root extracts on virus-induced airway remodeling conditions. Three cell lines were incubated with extracts from transformed (SOA4) and transgenic (SOPSS2, with overexpression of the gene encoding squalene synthase 1) hairy roots of Senna obtusifolia in cell lines undergoing human rhinovirus-16 (HRV-16) infection. The effects of the extracts on the inflammatory process were determined based on the expression of inflammatory cytokines (IL-8, TNF-α, IL-1α and IFN-γ) and total thiol content. The transgenic Senna obtusifolia root extract reduced virus-induced expression of TNF, IL-8 and IL-1 in WI-38 and NHBE cells. The SOPSS2 extract reduced IL-1 expression only in lung epithelial cells. Both tested extracts significantly increased the concentration of thiol groups in epithelial lung cells. In addition, the SOPPS2 hairy root extract yielded a positive result in the scratch test. SOA4 and SOPPS2 Senna obtusifolia hairy root extracts demonstrated anti-inflammatory effects or wound healing activity. The SOPSS2 extract had stronger biological properties, which may result from a higher content of bioactive secondary metabolites.


Assuntos
Interleucina-8 , Senna , Humanos , Interleucina-8/metabolismo , Senna/genética , Cicatrização , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Interleucina-1/metabolismo , Raízes de Plantas/genética
12.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903658

RESUMO

T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.


Assuntos
Micotoxinas , Toxina T-2 , Humanos , Linhagem Celular , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Micotoxinas/metabolismo , NADH Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Toxina T-2/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36981614

RESUMO

Inflammation is closely related to asthma and its defining feature: airway remodeling. The aim of this study was to determine the effects of extracts of normal (NR) and transformed (TR) Leonotis nepetifolia roots on respiratory cells and against the gingival epithelium. Extracts from NR and TR roots were added to lung fibroblast, bronchial epithelial and gingival fibroblast cell lines, in the presence of HRV-16 infection, to determine their impact on inflammation. The expression of inflammatory cytokines (IL-6, IL-1ß, GM-CSF and MCAF) as well as total thiol contents were assessed. The TR extract inhibited rhinovirus-induced IL-6 and IL-1ß expression in all tested airway cells (p < 0.05). Additionally, the extract decreased GM-CSF expression in bronchial epithelial cells. The tested extracts had positive effects on total thiol content in all tested cell lines. The TR root extract demonstrated wound healing potential. While both tested extracts exhibited anti-inflammatory and antioxidative effects, they were stronger for the TR extract, possibly due to higher concentrations of beneficial metabolites such as phenols and flavonoids. Additionally, wound healing activity was demonstrated for the TR root extract. These results suggest that TR root extract may become a promising therapeutic agent in the future.


Assuntos
Citocinas , Lamiaceae , Humanos , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-6 , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lamiaceae/metabolismo , Inflamação/tratamento farmacológico
14.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580665

RESUMO

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética
15.
Cells ; 11(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291112

RESUMO

Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II-Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.


Assuntos
Diterpenos , Plectranthus , Humanos , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Colforsina , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Simulação de Acoplamento Molecular , Plectranthus/química , Plectranthus/metabolismo , Protoporfirinogênio Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pigmentos da Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232954

RESUMO

Since cancer treatment by radio- and chemotherapy has been linked to safety concerns, there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants represent promising candidates. The current study investigates the anticancer features of halimane (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7 activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced MMP (ΔΨm) and mitochondrial copy numbers. They also changed the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in in vivo test for the compounds tested. The potential mechanism of action may have been associated with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway; however, further in vivo research is needed to understand the mechanisms of action and potential of these compounds.


Assuntos
Antineoplásicos , Diterpenos , Plectranthus , Antineoplásicos/farmacologia , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Colforsina/farmacologia , DNA Mitocondrial/metabolismo , Diterpenos/farmacologia , Corantes Fluorescentes/farmacologia , Iodetos , Potencial da Membrana Mitocondrial , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos , Proteína X Associada a bcl-2/metabolismo
17.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012250

RESUMO

The preclinical research conducted so far suggest that depression development may be influenced by the inflammatory pathways both at the periphery and within the central nervous system. Furthermore, inflammation is considered to be strongly connected with antidepressant treatment resistance. Thus, this study explores whether the chronic mild stress (CMS) procedure and agomelatine treatment induce changes in TGFA, TGFB, IRF1, PTGS2 and IKBKB expression and methylation status in peripheral blood mononuclear cells (PBMCs) and in the brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or agomelatine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that both CMS and antidepressant agomelatine treatment influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs and the brain. What is more, the present study showed that response to either stress stimuli or agomelatine differed between brain structures. Concluding, our results indicate that TGFA, TGFB, PTGS2, IRF1 and IKBKB could be associated with depression and its treatment.


Assuntos
Acetamidas , Encéfalo , Leucócitos Mononucleares , Naftalenos , Acetamidas/farmacologia , Animais , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Quinase I-kappa B/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Naftalenos/farmacologia , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Estresse Psicológico
18.
Genes (Basel) ; 13(6)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741863

RESUMO

Research studies regarding synthetic lethality (SL) in human cells are primarily motivated by the potential of this phenomenon to be an effective, but at the same time, safe to the patient's anti-cancer chemotherapy. Among the factors that are targets for the induction of the synthetic lethality effect, those involved in DNA repair seem to be the most relevant. Specifically, when mutation in one of the canonical DNA double-strand break (DSB) repair pathways occurs, which is a frequent event in cancer cells, the alternative pathways may be a promising target for the elimination of abnormal cells. Currently, inhibiting RAD52 and/or PARP1 in the tumor cells that are deficient in the canonical repair pathways has been the potential target for inducing the effect of synthetic lethality. Unfortunately, the development of resistance to commonly used PARP1 inhibitors (PARPi) represents the greatest obstacle to working out a successful treatment protocol. DNA polymerase theta (Polθ), encoded by the POLQ gene, plays a key role in an alternative DSB repair pathway-theta-mediated end joining (TMEJ). Thus, it is a promising target in the treatment of tumors harboring deficiencies in homologous recombination repair (HRR), where its inhibition can induce SL. In this review, the authors discuss the current state of knowledge on Polθ as a potential target for synthetic lethality-based anticancer therapies.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Reparo de DNA por Recombinação , Mutações Sintéticas Letais/genética
19.
Comput Oper Res ; 146: 105919, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35755160

RESUMO

In this paper, we consider the problem of planning non-pharmaceutical interventions to control the spread of infectious diseases. We propose a new model derived from classical compartmental models; however, we model spatial and population-structure heterogeneity of population mixing. The resulting model is a large-scale non-linear and non-convex optimisation problem. In order to solve it, we apply a special variant of covariance matrix adaptation evolution strategy. We show that results obtained for three different objectives are better than natural heuristics and, moreover, that the introduction of an individual's mobility to the model is significant for the quality of the decisions. We apply our approach to a six-compartmental model with detailed Poland and COVID-19 disease data. The obtained results are non-trivialand sometimes unexpected; therefore, we believe that our model could be applied to support policy-makers in fighting diseases at the long-term decision-making level.

20.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563320

RESUMO

T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.


Assuntos
Toxina T-2 , Apoptose , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Necrose/induzido quimicamente , Toxina T-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA